Kamis, 19 Februari 2009

Optimalisasi Mozilla FireFox

Berikut akan saya jelaskan bagaimana cara meningkatkan performa dari Mozilla FireFox agar dapat lebih cepat dari standard-nya. Untuk itu, ada baiknya Anda mem-backup Mozilla Anda terlebih dahulu sebelum mencoba hanya untuk langkah pengamanan saja. Mari kita mulai tutorial ini!

1. Pada Mozilla FireFox sudah pasti terdapat konfigurasi-konfigurasi yang diberikan oleh vendor untuk menjalankannya. Untuk mengkonfigurasi standard tersebut, Buka Mozilla FireFox terlebih dahulu dan ketikkan about:config di dalam address bar-nya.

2. Setelah itu, carilah kata-kata yang seperti di bawah ini:
- network.http.pipelining false
- network.http.proxy.pipelining false
- network.http.pipelining.maxrequests 4

3. Saatnya kita mengkonfigurasi web browser ini dengan cara klik kiri dua kali. Untuk konfigurasinya, Anda dpat melihat konfigurasi dibawah ini.
- Set network.http.pipelining menjadi true.
- Set network.http.proxy.pipelining menjadi true.
- Set network.http.pipelining.maxrequests menjadi 30 atau terserah anda.

Secara normalnya jika pada network.http.pipelining ?false? maka akan merequest sekali saja ke web yang kita tuju pada saat itu. Dengan kita mengubah menjadi ?true? akan merequest beberapa kali ke web yang kita tuju.


Pada network.http.pipelining.maxrequests yang kita ubah menjadi 30 akan merequest sebanyak 30 pada web yang kita tuju.

Jika Anda ingin lebih cepat lagi, kita akan menambahkan va-riabel baru dalam konfigurasi Mozilla FireFox ini. Untuk itu, ikutilah cara dibawah ini :

  1. Klik kanan pada layar kosong di Mozilla FireFox dan pilihlah menu New > Integer.

  2. Setelah itu berilah nama nglayout.initialpaint.delay dan set valuenya menjadi 0. Ini adalah waktu menunggu dari browser sebelum menerima infromasi dari site yang kita kunjungi. Tutuplah borwser Mozilla FireFox Anda dan bukalah kembali. Konfigurasi telah dapat digunakan.

Sumber : http://komputernyaman.blogspot.com

Read More..

Sabtu, 14 Februari 2009

Search Result

Read More..

Minggu, 28 Desember 2008

History Jet engine

A jet engine is a reaction engine that discharges a fast moving jet of fluid to generate thrust in accordance with Newton's laws of motion. This broad definition of jet engines includes turbojets, turbofans, rockets, ramjets, pulse jets and pump-jets. In general, most jet engines are internal combustion engines but non-combusting forms also exist.

In common usage, the term 'jet engine' generally refers to an internal combustion duct engine, which typically consists of an engine with a rotary air compressor powered by a turbine ("Brayton cycle"), with the leftover power providing thrust via a propelling nozzle. These types of jet engines are primarily used by jet aircraft for long distance travel. The early jet aircraft used turbojet engines which were relatively inefficient for subsonic flight. Modern subsonic jet aircraft usually use high-bypass turbofan engines which help give high speeds as well as, over long distances, giving better fuel efficiency than many other forms of transport.

About 7.2% of the oil used in 2004 was ultimately consumed by jet engines. In 2007, the cost of jet fuel, while highly variable from one airline to another, averaged 26.5% of total operating costs, making it the single largest operating expense for most airlines.

Jet engines can be dated back to the first century AD, when Hero of Alexandria (a Phoenician) invented the aeolipile. This used steam power directed through two jet nozzles so as to cause a sphere to spin rapidly on its axis. So far as is known, it was little used for supplying mechanical power, and the potential practical applications of Hero's invention of the jet engine were not recognized. It was simply considered a curiosity.

Jet propulsion only literally and figuratively took off with the invention of the rocket by the Chinese in the 13th century. Rocket exhaust was initially used in a modest way for fireworks but gradually progressed to propel formidable weaponry; and there the technology stalled for hundreds of years.

In Ottoman Turkey in 1633 Lagari Hasan Çelebi took off with what was described to be a cone shaped rocket and then glided with wings into a successful landing winning a position in the Ottoman army. However, this was essentially a stunt.

The problem was that rockets are simply too inefficient at low speeds to be useful for general aviation. In 1913 René Lorin came up with a form of jet engine, the subsonic ramjet, which would have been somewhat more efficient, but he had no way to achieve high enough speeds for it to operate, and the concept remained theoretical for quite some time.

However, engineers were beginning to realize that the piston engine was self-limiting in terms of the maximum performance which could be attained; the limit was essentially one of propeller efficiency. This seemed to peak as blade tips approached the speed of sound. If engine, and thus aircraft, performance were ever to increase beyond such a barrier, a way would have to be found to radically improve the design of the piston engine, or a wholly new type of powerplant would have to be developed. This was the motivation behind the development of the gas turbine engine, commonly called a "jet" engine, which would become almost as revolutionary to aviation as the Wright brothers' first flight.

The earliest attempts at jet engines were hybrid designs in which an external power source first compressed air, which was then mixed with fuel and burned for jet thrust. In one such system, called a thermojet by Secondo Campini but more commonly, motorjet, the air was compressed by a fan driven by a conventional piston engine. Examples of this type of design were Henri Coandă's Coandă-1910 aircraft, and the much later Campini Caproni CC.2, and the Japanese Tsu-11 engine intended to power Ohka kamikaze planes towards the end of World War II. None were entirely successful and the CC.2 ended up being slower than the same design with a traditional engine and propeller combination.

The key to a practical jet engine was the gas turbine, used to extract energy from the engine itself to drive the compressor. The gas turbine was not an idea developed in the 1930s: the patent for a stationary turbine was granted to John Barber in England in 1791. The first gas turbine to successfully run self-sustaining was built in 1903 by Norwegian engineer Ægidius Elling. Limitations in design and practical engineering and metallurgy prevented such engines reaching manufacture. The main problems were safety, reliability, weight and, especially, sustained operation.

In Hungary, Albert Fonó In 1915 devised a solution for increasing the range of artillery, comprising a gun-launched projectile which was to be united with a ramjet propulsion unit. This was to make it possible to obtain a long range with low initial muzzle velocities, allowing heavy shells to be fired from relatively lightweight guns. Fonó submitted his invention to the Austro-Hungarian Army but the proposal was rejected. In 1928 he applied for a German patent on aircraft powered by supersonic ramjets, and this was awarded in 1932.

The first patent for using a gas turbine to power an aircraft was filed in 1921 by Frenchman Maxime Guillaume. His engine was an axial-flow turbojet.

In 1923, Edgar Buckingham of the US National Bureau of Standard published a report expressing scepticism that jet engines would be economically competitive with prop driven aircraft at the low altitudes and airspeeds of the period: "there does not appear to be, at present, any prospect whatever that jet propulsion of the sort here considered will ever be of practical value, even for military purposes."

Instead, by the 1930s, the piston engine in its many different forms (rotary and static radial, aircooled and liquid-cooled inline) was the only type of powerplant available to aircraft designers. This was acceptable as long as only low performance aircraft were required, and indeed all that were available.

n 1928, RAF College Cranwell cadet [10]Frank Whittle formally submitted his ideas for a turbo-jet to his superiors. In October 1929 he developed his ideas further.[11] . On 16 January 1930 in England, Whittle submitted his first patent (granted in 1932).[12] The patent showed a two-stage axial compressor feeding a single-sided centrifugal compressor. Practical axial compressors were made possible by ideas from A.A.Griffith in a seminal paper in 1926 ("An Aerodynamic Theory of Turbine Design"). Whittle would later concentrate on the simpler centrifugal compressor only, for a variety of practical reasons. Whittle had his first engine running in April 1937. It was liquid-fuelled, and included a self-contained fuel pump. Whittle's team experienced near-panic when the engine would not stop, accelerating even after the fuel was switched off. It turned out that fuel had leaked into the engine and accumulated in pools. So the engine would not stop until all the leaked fuel had burned off. Whittle was unable to interest the government in his invention, and development continued at a slow pace.

In 1935 Hans von Ohain started work on a similar design in Germany, apparently unaware of Whittle's work.[13] His first engine was strictly experimental and could only run under external power, but he was able to demonstrate the basic concept. Ohain was then introduced to Ernst Heinkel, one of the larger aircraft industrialists of the day, who immediately saw the promise of the design. Heinkel had recently purchased the Hirth engine company, and Ohain and his master machinist Max Hahn were set up there as a new division of the Hirth company. They had their first HeS 1 centrifugal engine running by September 1937. Unlike Whittle's design, Ohain used hydrogen as fuel, supplied under external pressure. Their subsequent designs culminated in the gasoline-fuelled HeS 3 of 1,100 lbf (5 kN), which was fitted to Heinkel's simple and compact He 178 airframe and flown by Erich Warsitz in the early morning of August 27, 1939, from Rostock-Marienehe aerodrome, an impressively short time for development. The He 178 was the world's first jet plane.

The world's first turboprop was the Jendrassik Cs-1 designed by the Hungarian mechanical engineer György Jendrassik. It was produced and tested in the Ganz factory in Budapest between 1939 and 1942. It was planned to fit to the Varga RMI-1 X/H twin-engined reconnaissance bomber designed by László Varga in 1940, but the program was cancelled. Jendrassik had also designed a small-scale 75 kW turboprop in 1937. Whittle's engine was starting to look useful, and his Power Jets Ltd. started receiving Air Ministry money. In 1941 a flyable version of the engine called the W.1, capable of 1000 lbf (4 kN) of thrust, was fitted to the Gloster E28/39 airframe specially built for it, and first flew on May 15, 1941 at RAF Cranwell.

A Scottish aircraft engine designer, Frank Halford, working from Whittle's ideas developed a "straight through" version of the centrifugal jet; his design became the de Havilland Goblin.

One problem with both of these early designs, which are called centrifugal-flow engines, was that the compressor worked by "throwing" (accelerating) air outward from the central intake to the outer periphery of the engine, where the air was then compressed by a divergent duct setup, converting its velocity into pressure. An advantage of this design was that it was already well understood, having been implemented in centrifugal superchargers, then in widespread use on piston engines. However, given the early technological limitations on the shaft speed of the engine, the compressor needed to have a very large diameter to produce the power required. This meant that the engines had a large frontal area, which made it less useful as an aircraft powerplant due to drag. A further disadvantage was that the air flow had to be "bent" to flow rearwards through the combustion section and to the turbine and tailpipe, adding complexity and lowering efficiency. Nevertheless, these types of engines had the major advantages of light weight, simplicity and reliability, and development rapidly progressed to practical airworthy designs.

Austrian Anselm Franz of Junkers' engine division (Junkers Motoren or Jumo) addressed these problems with the introduction of the axial-flow compressor. Essentially, this is a turbine in reverse. Air coming in the front of the engine is blown towards the rear of the engine by a fan stage (convergent ducts), where it is crushed against a set of non-rotating blades called stators (divergent ducts). The process is nowhere near as powerful as the centrifugal compressor, so a number of these pairs of fans and stators are placed in series to get the needed compression. Even with all the added complexity, the resulting engine is much smaller in diameter and thus, more aerodynamic. Jumo was assigned the next engine number in the RLM numbering sequence, 4, and the result was the Jumo 004 engine. After many lesser technical difficulties were solved, mass production of this engine started in 1944 as a powerplant for the world's first jet-fighter aircraft, the Messerschmitt Me 262 (and later the world's first jet-bomber aircraft, the Arado Ar 234). A variety of reasons conspired to delay the engine's availability, this delay caused the fighter to arrive too late to decisively impact Germany's position in World War II. Nonetheless, it will be remembered as the first use of jet engines in service.

In the UK, their first axial-flow engine, the Metrovick F.2, ran in 1941 and was first flown in 1943. Although more powerful than the centrifugal designs at the time, the Ministry considered its complexity and unreliability a drawback in wartime. The work at Metrovick led to the Armstrong Siddeley Sapphire engine which would be built in the US as the J65.

Following the end of the war the German jet aircraft and jet engines were extensively studied by the victorious allies and contributed to work on early Soviet and US jet fighters. The legacy of the axial-flow engine is seen in the fact that practically all jet engines on fixed wing aircraft have had some inspiration from this design.

Centrifugal-flow engines have improved since their introduction. With improvements in bearing technology the shaft speed of the engine was increased, greatly reducing the diameter of the centrifugal compressor. The short engine length remains an advantage of this design, particularly for use in helicopters where overall size is more important than frontal area. Also as their engine components are more robust they are less liable to foreign object damage than axial-flow compressor engines.

Although German designs were more advanced aerodynamically, the combination of simplicity and advanced British metallurgy meant that Whittle-derived designs were far more reliable than their German counterparts. British engines also were licensed widely in the US (see Tizard Mission),and were sold to the USSR who reverse engineered them with the Nene going on to power the famous MiG-15. American and Soviet designs, independent axial-flow types for the most part, would not come fully into their own until the 1960s, although the General Electric J47 provided excellent service in the F-86 Sabre in the 1950s.

By the 1950s the jet engine was almost universal in combat aircraft, with the exception of cargo, liaison and other specialty types. By this point some of the British designs were already cleared for civilian use, and had appeared on early models like the de Havilland Comet and Avro Canada Jetliner. By the 1960s all large civilian aircraft were also jet powered, leaving the piston engine in niche roles here as well.

Relentless improvements in the turboprop pushed the piston engine out of the mainstream entirely, leaving it serving only the smallest general aviation designs, and some use in drone aircraft. The ascension of the jet engine to almost universal use in aircraft took well under twenty years.

However, the story was not quite at an end, for the efficiency of turbojet engines was still rather worse than piston engines, but by the 1970s with the advent of high bypass jet engines, an innovation not foreseen by the early commentators like Edgar Buckingham, at high speeds and high altitudes that seemed absurd to them, only then did the fuel efficiency finally exceed that of the best piston and propeller engines, and the dream of fast, safe, economical travel around the world finally arrived, and their dour, if well founded for the time, predictions that jet engines would never amount to much, were killed forever.
Read More..

Berlangganan Artikel Gratis

Tertarik dengan tulisan ini ? Masukkan alamat e-mail Anda, jika ingin berlangganan Artikel terbaru dari blog ini :

Delivered by FeedBurner